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Abstract—Objective: This paper aims at proposing a
new machine-learning based model to improve the calcu-
lation of mealtime insulin boluses (MIB) in type 1 diabetes
(T1D) therapy using continuous glucose monitoring (CGM)
data. Indeed, MIB is still often computed through the stan-
dard formula (SF), which does not account for glucose
rate-of-change (ΔG), causing critical hypo/hyperglycemic
episodes. Methods: Four candidate models for MIB calcu-
lation, based on multiple linear regression (MLR) and least
absolute shrinkage and selection operator (LASSO) are de-
veloped. The proposed models are assessed in silico, using
the UVa/Padova T1D simulator, in different mealtime sce-
narios and compared to the SF and three ΔG-accounting
variants proposed in the literature. An assessment on real
data, by retrospectively analyzing 218 glycemic traces, is
also performed. Results: All four tested models performed
better than the existing techniques. LASSO regression with
extended feature-set including quadratic terms (LASSOQ)
produced the best results. In silico, LASSOQ reduced the
error in estimating the optimal bolus to only 0.86 U (1.45 U
of SF and 1.36–1.44 U of literature methods), as well as hy-
poglycemia incidence (from 44.41% of SF and 44.60–45.01%
of literature methods, to 35.93%). Results are confirmed by
the retrospective application to real data. Conclusion: New
models to improve MIB calculation accounting for CGM-ΔG
and easy-to-measure features can be developed within a
machine learning framework. Particularly, in this paper, a
new LASSOQ model was developed, which ensures better
glycemic control than SF and other literature methods. Sig-
nificance: MIB dosage with the proposed LASSOQ model
can potentially reduce the risk of adverse events in T1D
therapy.

Index Terms— Continuous glucose monitoring, least ab-
solute shrinkage and selection operator, linear regression,
glycemic control, hypoglycemia.
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I. INTRODUCTION

TYPE 1 diabetes (T1D) is a chronic disease caused by
the progressive autoimmune destruction of pancreatic beta

cells. The lack of endogenous insulin production results in
elevated blood glucose (BG) levels and, in particular, in hyper-
glycemia (BG> 180 mg/dL), a condition that can lead to several
pathologies, such as cardiovascular complications, retinopathy
and nephropathy [1]. Therefore, T1D individuals need lifelong
therapy based on exogenous insulin administrations, whose ex-
cessive dosing induces hypoglycemia (BG< 70 mg/dL) and also
short-term complications, including fainting, weakness, coma
and, even, death [2].

According to the Diabetes Control and Complications Trial
(DCCT), proper glycemic control is mandatory for T1D manage-
ment and treatment [3]. One of the most critical steps in current
standard therapy for exogenous insulin administration is accu-
rate and effective estimation of the meal-insulin bolus (MIB)
amount, in order to avoid post-prandial hypo/hyperglycemia.
MIB is commonly calculated through an empirical standard
formula (SF) [4]:

MIBSF =
CHO

CR
+

Gc −Gt

CF
− IOB (1)

where MIBSF is the mealtime insulin bolus (MIB) computed
through the SF, CHO (g) is the meal carbohydrate intake, CR
(g/U) and CF (mg/dL/U) are the insulin-to-carbohydrates ratio
and the correction factor, i.e., two therapy parameters tuned, by
the clinician, through a trial-and-error procedure [5],Gc (mg/dL)
is the current BG level, Gt (mg/dL) is the target BG level, IOB
(U) is the insulin on board at mealtime [6], i.e., an estimate
of the amount of previously injected insulin that is still acting
in the organism. However, estimating MIB using the SF can
be suboptimal [7]. In particular, MIBSF does not include any
information on glucose dynamics at mealtimes. Indeed, the only
term reflecting the BG status is Gc, which, however, is a static
measurement of BG concentration. Intuitively, knowing whether
BG is stable or increasing/decreasing, can be useful for more
effective MIB calculation and, consequently, might be able to
improve post-prandial glycemic control. Currently, such infor-
mation on BG dynamics and, in particular, its rate-of-change
(ΔG) is provided, in real-time, by continuous glucose moni-
toring (CGM) sensors. CGM systems are minimally invasive
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devices that are becoming a key element in T1D therapy. In fact,
not only can CGM sensors improve the detection of hypo and
hyperglycemic episodes [8]–[10], but they can also be used to
take treatment decisions, for example insulin dosing, without
requiring confirmatory BG measurements through invasive, and
uncomfortable, fingerprick devices [11].

The real-time availability of information on glucose dynam-
ics provided by CGM systems, along with the possibility of
using the BG measurements they provide for insulin dosing,
has encouraged the development of new rules to adjust the
MIBSF according to the ΔG provided by these sensors. The
Scheiner (SC) [12] and Pettus/Edelman [13] methods, assume
that ΔG will be stable by the time the insulin starts to act,
and use ΔG as a predictor to infer the future value of BG
in the coming 30–60 minutes and then increase/decrease Gc

accordingly. The approach proposed by Buckingham (BU) [14]
performs a percentage increase/decrease of MIBSF consistent
with ΔG magnitude and direction. The methods developed by
Klonoff [15], Aleppo/Laffel [16] and Ziegler (ZI) [17] correct
MIBSF by adding/subtracting a specified quantity to its value
according to ΔG. The two latter methods adjust the dose by
taking into account also the patient-specific parameter CF, which
individualizes the adjustment.

The derivation of all previous rules for MIBSF correction
has mainly been empirical, suggesting that there would be room
for improvement should a systematic modeling methodology
be adopted. Moreover, a recent in silico assessment of BU, SC
and Pettus/Edelman formulae has shown that all methods per-
formed similarly for all BG and ΔG conditions at mealtime [7],
advancing the search for more effective, and possibly personal-
ized, MIB calculation strategies. Some recent proof-of-concept
studies have also shown that machine learning techniques can
be used to tailor the MIBSF correction to meet patient-specific
parameters [18], [19], or could even be used to draw up new
rules for MIB estimation, rules which would include ΔG as an
input [20], that is, by abandoning the idea of using the MIBSF

as an initial estimate to be adjusted according to ΔG.
Thus, this work aims to develop a new approach to MIB

calculation which is based not only on the parameters already
appearing in equation (1), but also on the glucose ΔG that is
provided by CGM and other easily accessible patient-dependent
variables, such as body weight (BW) and insulin basal rate (Ib).

Four candidate models based on multiple linear regression
(MLR) and the least absolute shrinkage and selection operator
(LASSO) have been developed in a simulation environment
using both a simple feature set and extended feature sets,
which include quadratic and interaction terms. The models have
been tested both in silico and, retrospectively, on clinical data
collected in T1D individuals versus other approaches in the
literature that are currently used for MIBSF correction.

II. DATASETS AND FEATURES

A. Simulated Dataset

The UVa/Padova T1D Simulator[21], which deploys a math-
ematical model of glucose, insulin and glucagon dynamics in
T1D, has been used to generate synthetic data for 100 virtual

adult subjects to train and test the new models. Developing
new MIB calculation models within a simulation environment is
particularly advantageous for two main reasons. Firstly, a simu-
lation environment makes it possible to generate a unique dataset
where patients undergo multiple meal tests while maintaining
the same surrounding conditions. This would be impossible to
replicate with clinical trials, since a patient’s behaviour, and
physiological state, do not remain the same. Secondly, extreme
conditions, which are difficult and dangerous to obtain in clin-
ical trials, can be simulated without any risk for the patient.
This virtual population was subjected to multiple single-meal
scenarios in a noise-free ambient [21], which consisted of: using
optimal therapy parameters; not permitting either postprandial
correction boluses or rescue carbohydrate intakes; and, no errors
in either CHO counting, BG measurements or inΔG estimation.
Moreover, we also switched off the intra-patient variability of
insulin sensitivity during the meal. All these choices were made
in order to eliminate any confounding factors that could have
influenced the outcomes of the study.

Each single-meal scenario lasted 12 hours from 7:00 to 19:00.
The first part of the simulation (from 7:00 to 13:00) was used
to create specific pre-prandial conditions in terms of ΔG and
BG in the patient at mealtime, by manipulating both the time
and amount of two CHO intakes and one insulin bolus. This
generated 108 initial conditions, corresponding to combining 9
different ΔG values (from −2 to +2 mg/dL/min with a step
equal to 0.5 mg/dL/min) and 12 different preprandial BG values
(from 70 to 180 mg/dL with a step equal to 10 mg/dL) for each
virtual subject. Then, at 1pm, a meal was set. We then simulated
15 different CHO amounts (from 10 to 150 g with a step of 10 g)
for each patient.

Lastly, for each patient and each meal condition (in terms
of preprandial BG, ΔG and meal CHO) the optimal MIB dose
(MIBOPT ) was computed by minimizing the blood glucose risk
index (BGRI) [22] that was evaluated during the post-prandial
window (from 13:00 to 19:00 PM). BGRI is a risk index with
values between 0 and 100, with 0 representing the lowest risk and
100 representing the highest. We chose the BGRI as cost function
since this metric, because of the symmetrization of the BG mea-
surement scale, equalizes the amplitude of hyper/hypoglycemic
excursions with respect to the risk they carry (a hypoglycemic
excursion is much more risky than a hyperglycemic excursion
with same amplitude).

Fig. 1 depicts two representative scenarios in terms of BG
excursion and MIBOPT . The upper panel shows one exam-
ple with a mealtime condition of BG = 100 mg/dL, ΔG
= +1 mg/dL/min, and CHO = 50 g. In the lower panel
there is an example with mealtime BG = 150 mg/dL, ΔG =
−0.5 mg/dL/min and CHO = 50 g. Note that, in both scenarios,
MIBOPT permits proper glycemic control by maintaining the
BG within the euglycemic range.

The resulting simulated dataset, with 162000 traces, was
divided into training and testing sets. The data on 80 subjects
were assigned to the training set, while the remaining data, on
20 subjects, were assigned to the test set. The assignment of
each virtual subject either to the training or to the test set was
performed randomly. Note, also, that each subject was included
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Fig. 1. Two representative simulated scenarios for a virtual subject
considering a meal of CHO content equal to 50 g provided at 13:00.
The upper panel shows a 7-hour BG curve with BG equal to 100 mg/dL
and ΔG equal to +1 mg/dL/min at mealtime and the respective MIBOPT

of 3.10 U. The lower panel shows, respectively, a 7-hour BG curve with
BG equal to 150 mg/dL and ΔG equal to −0.5 mg/dL/min at mealtime
and a MIBOPT of 2.65 U.

either in the training or in the testing set, so as to provide an
unbiased evaluation of performance of the model.

B. Real Dataset

Data collected during a randomised crossover trial in patients
with T1D [23] were used for a retrospective analysis to assess the
effectiveness of the model proposed when applied to real data.
In this study, patients were randomized either to 2 months of
closed-loop therapy from dinner to waking up, plus open-loop
therapy during the day, or, to 2 months of all-day open-loop
therapy. Here, we selected only the data collected during the
all-day open-loop phase, since we are working on this specific
type of therapy setting. Only meals and postprandial inter-
vals lasting 4-hours were considered in the analysis. Intervals
containing rescue carbohydrate intakes or correction boluses
were excluded. Moreover, only intervals with a combination
of positive preprandial ΔG and postprandial hyperglycemic
event occurrence (scenario A) and of negative preprandial ΔG
postprandial hypoglycemic event occurrence (scenario B) were
taken into account because, in these cases, the expected result
of an effective ΔG-based MIB calculation is already known:
an increased MIB amount, in scenario A, and a decreased MIB
amount, in scenario B, when compared to the dose really taken
by the patient. We also only selected intervals with a magnitude
of hypo- and hyper event greater than 10 % of the total time
window, in order to avoid irrelevant episodes. The resulting
dataset is made up of 218 glycemic traces, 169 for scenario
A, 49 for scenario B.

C. Features Extraction

We extracted 10 easy-to-measure features, informative of
patient physiology and status, from both simulated and real

dataset. Some of these variables are strictly patient-dependent
and could be considered as constant for each individual, i.e. CR,
CF, BW, Gt and Ib. The remaining features describe the condition
of the subject at mealtimes, i.e. Gc, ΔG, CHO, and IOB. As
well as these parameters describing the patient and mealtime
condition, we also considered the MIB dose calculated by SF
(MIBSF ) as an additional feature, because this takes into account
the non-linear combinations of parameters that are known to be
important for MIB calculations. Within a broader perspective,
all the features used would be easily accessible in daily life,
thus we ensured that the new model could be applied and used
by a T1D individual. Lastly, because of differing measurement
units and scales in the features, we standardized the variables by
removing the mean, and by scaling then to unit variance [24].

III. THE NEW MODELS FOR MIB CALCULATION

Among the possible approaches to target the MIBOPT , we
chose MLR and LASSO [24] because these methodologies are
simple and are able to provide an adequate and interpretable de-
scription of how the inputs affect the output. Indeed, each MLR
coefficient represents the slope of the linear relationship between
the output and that portion of input which is independent from
all the others. Moreover, model interpretability represents a
desirable feature for clinicians, which could encourage them
to use it in clinical practice.

A. MLR Model

The MLR model is:

ŷ = α̂0 +

p∑
j=1

xj · α̂j (2)

wherey is the target variable, i.e. MIBOPT ,xj is the j-th feature,
αj the coefficient related to the j-th feature, α0 is the model
intercept and p represents the number of features. Parameters α̂j

are estimated through the least squares estimation method [24],
which chooses a vector α̂ of coefficients that minimizes the
residual sum of squares (RSS):

α̂ = argmin
α

RSS(α) (3)

where

RSS(α) =
N∑
i=1

(yi − ŷi)
2 (4)

and yi is the i-th observation of MIBOPT , ŷi the corresponding
model prediction.

B. LASSO Models

To deal with multicollinearity, we used shrinkage methods.
In particular, we resorted to LASSO regression models, which
are well known to be robust to multicollinearity [25].LASSO
coefficients are estimated by minimizing eq. (4) with the addition
of the absolute value of the coefficients magnitude as a penalty
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term:

α̂ = argmin
α

⎧⎨
⎩RSS(α) + λ

p∑
j=1

|αj |
⎫⎬
⎭ (5)

where λ ≥ 0 is a parameter controlling the amount of shrinkage
set, through an exhaustive grid search, with cross-validation in
the training set. In this paper, we trained three LASSO models
on three different feature sets:

� LASSO: trained on the feature set described in Section II-
C defined as {xj : j = 1, . . .p}.

� LASSOQ: trained on an expanded feature set which
includes variables reported in Section II-C plus their
quadratic values, defined as {xj , x

2
j : j = 1, . . .p}.

� LASSOQI : trained on an extended feature set which also
includes terms of between-features interaction, defined as
{xj , x

2
j , xij : j = 1, . . .p, i = 1, . . .p, i �= j}.

Note that, due to the intrinsic nonlinearity of the glucose-
insulin system, we also added polynomial transformations
of the input variables as features, thus capturing nonlinear
relationships between variables while still maintaining model
interpretability.

One of the key features of the LASSO model is that it performs
both automatic variable selection simultaneously, setting the
coefficients associated to unnecessary features to zero, and,
also regularization. In practice, this means that the LASSO
model slightly increases the bias to reducing the variance of
the predicted values: this leads to an overall improvement in the
accuracy of predictions [24]. In this application here, this natural
feature selection capability made it possible to considerably
reduce the number of features, and to avoid overfitting, espe-
cially when quadratic (LASSOQ) and quadratic plus interaction
(LASSOQI ) terms were included in the dataset.

IV. IN SILICO DATA: ASSESSMENT CRITERIA

A. Methods From the Literature Adopted for Comparison

In order to carry out a comprehensive evaluation of the new
models, their performance was compared to that of three, se-
lected, state-of-the-art methods: BU, SC and ZI. These three
models well represent the different approaches, in the literature,
that are currently being used for MIBSF correction. BU per-
forms a 20% or 10% increase/decrease of MIBSF according
to ΔG magnitude and sign; SC corrects the Gc value used in
SF by, respectively, adding/subtracting 25 mg/dL for increas-
ing/decreasing ΔG; while ZI adds/subtracts a constant insulin
quantity based on CF value,ΔG magnitude and sign. For further
details on these methods, please see the original papers [12],
[14], [17].

B. Criteria for in Silico Assessment

The assessment of all the models considered for MIB calcula-
tion was performed on the test set. The first evaluation regards the
goodness-of-fit of the model. This was carried out by computing
both the root mean square error (RMSE) and the coefficient of
determination (R2), between the optimal and the estimated MIB
for each model. Next, we tested the effectiveness of the MIB
estimates provided by each model in terms of glycemic control.

We re-simulated each single-meal scenario (see Section II),
created with the UVa/Padova T1D simulator, by using the MIB
estimates provided by each model in place of the optimal model.
We then evaluated the BG pattern in the 6-hour postprandial
time window and assessed the goodness of glycemic control
using three metrics that are widely used for such purposes: BGRI
(introduced in Section II), and the percentage of time that the BG
trace spent in both hyperglycemia (THyper) and in hypoglycemia
(THypo) [26], [27]. The percentage of the incidence of hypo-
glycemic episodes (IHypo) was also calculated. These metrics
are commonly used to assess glycemic outcomes in T1D [27].
Lastly, to evaluate the statistical significance of the differences
in terms of BGRI, THyper, THypo with respect to SF, a Friedman
test was performed with a 5% significance level. We chose
this test, which is the nonparametric equivalent of the classical
balanced two-way ANOVA, both because metric distributions
are not Gaussian, and because there were repeated subjects
within the test set (with same physiology, but different initial
conditions). We also adjusted the p-values using the Bonferroni
method to account for multiple pairwise comparisons.

MIBMLR = 4.603− 0.137 CR− 0.191 CF − 0.181 Ib

− 0.380BW + 0.464Gt + 0.039 IOB − 0.065Gc

+ 0.858 ΔG+ 0.273 CHO + 2.686MIBSF (6)

MIBLASSO = 4.603− 0.214 CR− 0.238BW + 0.410Gt

− 0.032Gc + 0.806 ΔG+ 0.257 CHO + 2.661MIBSF

(7)

MIBLASSOQ
= 4.603− 0.198 CR+ 0.789 ΔG

+ 0.234 CHO + 2.671MIBSF − 0.224BW 2

+ 0.403Gt
2 − 0.020Gc

2 (8)

MIBLASSOQI
= 4.603− 0.150 CR ·Gt − 0.064 CR ·Gc

+ 0.007 CF ·MIBSF + 0.043 Ib ·ΔG+ 0.064 Ib · CHO

+ 0.019 Ib ·MIBSF − 0.199BW 2 + 0.064BW ·ΔG

+ 0.236Gt
2 + 0.632Gt ·ΔG

+ 0.167Gt · CHO + 2.66Gt ·MIBSF

+ 0.014 IOB · SF + 0.079ΔG ·MIBSF (9)

V. IN SILICO DATA: RESULTS

A. Correlation Analysis of Extracted
Features vs. MIBOPT

The first step here was to check whether the extracted features
and the optimal bolus MIBOPT were correlated or not. To do
this, a correlation analysis was performed, to assess whether the
features we had extracted, and presented in II-C were suitable for
predicting MIBOPT . Unsurprisingly, the results showed that the
most correlated feature was MIBSF , with a Pearson correlation
coefficient [28] of ρ= 0.90, followed by CHO (ρ= 0.65). Also
CR and ΔG resulted correlated with the target, with ρ=−0.41
and ρ = 0.39 respectively.
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TABLE I
PEARSON CORRELATION COEFFICIENTS CALCULATED BETWEEN EACH COUPLE OF FEATURES (FIRST TEN COLUMNS) AND BETWEEN EACH FEATURE AND

THE TARGET VARIABLE (LAST COLUMN)

Furthermore, the between-features correlation was also in-
vestigated, to check whether there was multicollinearity. In
particular, the features highly correlated each other are CF and
Ib (ρ = −0.73), CR and CF (ρ = 0.65), ΔG and IOB (ρ =
−0.58), BW and Ib (ρ = −0.55). As expected, MIBSF had
nonzero correlation with the majority of the variables, especially
with CHO (ρ = 0.74), CR (ρ = −0.41) and CF (ρ = −0.28).
Table I reports the Pearson correlation coefficients calculated
between each couple of features (first ten columns) and between
each feature and the target variable (last column).

This preliminary analysis showed that the target MIBOPT was
highly correlated withCHO,MIBSF ,CR andΔG, suggesting
that these could be the most relevant inputs for the models.
Moreover, the effect of multicollinearity should be taken into
account during model development, justifying the use of LASSO
methodology [25].

B. Identified Models

Here we report the equations of the models identified on
the training set. Comments on coefficient meaning and selected
features are also provided.

1) MLR: the resulting MLR equation, identified on the train-
ing set, is reported in eq. (6). As expected CHO, MIBSF and
ΔG contribute positively to the final insulin amount. Moreover,
their coefficients are generally bigger than the others (absolute
value), thus highlighting the importance of these features for
MIB computation. CR, makes a negative contribution since
the lower the CR the higher the amount of insulin required to
compensate a specific CHO intake. A similar reasoning, but in
terms of insulin sensitivity, can be applied to CF, which has
a negative sign. On the other hand, IOB and BW coefficients
present positive and negative signs, respectively, which are the
opposite to those expected from a physiological interpretation
of these variables. This result is probably due to the presence of
multicollinearity among features (as reported in Section V-A) .

2) LASSO: the LASSO equation identified is reported in
eq. (7). Note that variables CF, Ib and IOB were discarded
during the LASSO training procedure, by adopting the automatic
selection feature offered by this methodology.This result was
expected, since correlation analysis had revealed a high correla-
tion between these features and CR, BW, and ΔG, respectively.
Note also that the CR, BW and ΔG coefficients had changed
in (absolute) magnitude when compared to those of the MLR
model. The CR coefficient, in particular, has increased, whereas

the BW and ΔG coefficients have decreased, as well as the Gc
coefficient.

3) LASSOQ: the final LASSOQ equation is reported in eq.
(8). Note that, by adding the quadratic terms, only the most
relevant first-order features (CR, ΔG, CHO, MIBSF ) were
selected in the training procedure, while BW, Gt and Gc appear
within the model only with a quadratic contribution.

4) LASSOQI : the LASSOQI equation identified on the
training set is reported in eq. (9). More specifically, augmenting
the inputs with both quadratic and interaction terms leads to
the elimination of all the first-order terms, thus lending more
importance to the interaction and quadratic terms. In particular,
the highest coefficient is related to (Gt,MIBSF ) interaction,
followed by (Gt,ΔG), while the other coefficients are very close
to zero.

Remark: note that the three LASSO models were trained on
three different feature sets. The value of λ was chosen, for all the
models, by searching, exhaustively, among 200 equally-spaced
values ranging between 0.001 and 10 and by selecting the value
that maximized the R2 in a 5-fold cross validation (λ = 0.05).

C. Error in Estimating MIBOPT

The aim of this first evaluation, carried out on the simulated
test set, was to assess and quantify whether the models devel-
oped would be able to estimate MIBOPT more accurately than
SF, BU, SC, and ZI. Table II reports the results obtained in
terms of RMSE and R2. Models MLR, LASSO, LASSOQ and
LASSOQI estimate the optimal insulin bolus more accurately
when compared with the other methods. Specifically, RMSE
is 1.45 U for SF, 1.36–1.44 U for the literature models, and
0.84–0.87 U for the new models, with the best result achieved
by LASSOQI (RMSE = 0.84 U).

The R2 metric also improved with the new models (R2 =
0.91–0.92), achieving the highest value with LASSOQI (R2

= 0.92) when compared with SF (R2 = 0.82) and with the
methods described in the literature (R2 = 0.84–0.85). Note too,
that BU, SC and ZI also slightly improved their performances
when compared with SF, but both lower RMSE and higher R2

values were obtained with the proposed new models.

D. Assessment of Glycemic Control

MLR and LASSO models were also compared against SF, BU,
SC and ZI in terms of glycemic outcome. BGRI, THyper, THypo,
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TABLE II
COMPARISON OF METRICS FOR PREDICTION ACCURACY AND GOODNESS OF FIT EVALUATION. VALUES RELATED TO SF, STATE-OF-ART METHODS AND THE

MODELS PROPOSED ARE REPORTED

TABLE III
COMPARISON OF METRICS ASSESSING GLYCEMIC CONTROL FOR SF, STATE-OF-THE-ART METHODOLOGIES AND THE MODELS PROPOSED. METRICS
RELATED TO MIBOPT ARE REPORTED AS REFERENCE VALUES. MEDIAN AND INTERQUARTILE RANGE ARE REPORTED FOR BGRI, THypo, THyper

1 *Statistically significant compared to SF with p-value < 0.0071 (Bonferroni-corrected threshold).

Fig. 2. Distribution of the difference between BGRI of SF, MLR,
LASSO, LASSOQ, LASSOQI , BU, SC, ZI methods versus MIBOPT .

and IHypo were computed. The results obtained are reported
in Table III. When considering BGRI, SF revealed the highest
median risk (9.93) with regard to all the other methods, followed
by BU, SC and ZI which showed a median BGRI of 9.53, 9.72
and 9.68 respectively. The lowest median BGRI values were
obtained by LASSOQ (9.08) and LASSOQI (8.97), both of
which were close to the BGRI value that was obtained using
MIBOPT (8.23). Fig. 2 shows the distributions of difference in
BGRI (ΔBGRI) between each of the MIB calculation methods
and MIBOPT . Since the optimal insulin bolus minimizes the
BGRI function, the ΔBGRI distributions are in the positive
half-plane. Note that the BGRI distributions of our models are
closer to that of MIBOPT (lower ΔBGRI values) compared to
the other methodologies.

As regards hypoglycemia, median THypo values proved not
to be informative as they were equal to 0 for all methods. On the
other hand, considering the 75th percentile of THypo, together
with the IHypo values, it could be stated that the magnitude and
occurrence of hypoglycemic events is considerably reduced for
the models proposed when compared to SF, BU, SC and ZI. The
75th percentile of THypo in particular, decreases from about 28%

with SF, BU, SC and ZI to a value between 10.25% and 14.68%
obtained with the new models. In addition, also IHypo is reduced,
from about 44% of SF and literature methods to a value ranging
between 36.28–33.87% for the models proposed. Best results
were achieved by LASSOQI (75th percentile of THypo equal
to 10.25% and IHypo = 33.87%). The improvement in terms
of BGRI and THypo given by MLR, LASSO, LASSOQ and
LASSOQI is statistically significant (p-value < 0.0071) when
compared to SF. Regarding hyperglycemia, the median THyper

values slightly increased for all new models when compared
with the existing methods. This result was expected since BGRI,
which is the cost function minimized to compute MIBOPT ,
assigns a higher risk to hypoglycemia than it does to hyper-
glycemia, thus resulting in higher THyper values for MIBOPT

(and, consequently, also for the models proposed, which target
MIBOPT ) when compared to the methodologies proposed in
the literature. However, the THyper increase is moderate and is
not statistically significant when compared with SF. Moreover,
it does not negatively affect overall glycemic control in terms
of BGRI. The only new model that increases median THyper

when compared with MIBOPT is the LASSOQI model. In
conclusion, amongst all developed new models, we have selected
LASSOQ as the final model, because it permits the greatest
reduction of BGRI and THypo when compared with the existing
methods and does not increase median THyper when compared
with MIBOPT . Fig. 3 shows two representative postprandial
BG curves, after administration of MIB, computed through
LASSOQ, MIBOPT and the existing methods. Note that only
LASSOQ has been considered for reasons of better visualization,
since it is the final, selected model in this study. As shown in
the upper panel, SF, BU and SC all induce hypoglycemia, while
LASSOQ and ZI permit proper glycemic control, approaching
that of MIBOPT , and, despite the initial hyperglycemia that
was mainly due to the meal, and to high pre-prandial BG. The
lower panel shows the occurrence of hyperglycemic events after
the application of SF, BU, ZI and SC methodologies, while
LASSOQ permitted optimal glycemic control.
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TABLE IV
COMPARISON OF METRICS OBTAINED FROM SCENARIO A, FOR SF, STATE-OF-THE-ART METHODOLOGIES AND LASSOQ. MEDIAN AND INTERQUARTILE

RANGE ARE REPORTED FOR THypo, THyper , MEAN AND STANDARD DEVIATION FOR TTarget

Fig. 3. Representative examples of BG curves during postprandial
time window for different methods of insulin bolus computation and
different mealtime conditions. For a better visualization, only LASSOQ

among the models proposed is reported. In the upper panel, meal-
time ΔG is negative (−1.5 mg/dL/min), starting BG = 160 mg/dL and
meal CHO is 60 g. The calculated MIB doses are MIBOPT = 1.89 U,
MIBSF = 3.62 U, MIBLASSOQ

= 1.94 U, MIBBU = 3.26 U,
MIBSC = 3.02 U, MIBZI = 2.12 U. In the lower panel, mealtime ΔG
is positive (1.5 mg/dL/min), starting BG = 100 mg/dL and meal CHO
is 30 g. The MIB doses are MIBOPT = 2.80 U, MIBSF = 0.72 U,
MIBLASSOQ

= 2.74 U, MIBBU = 0.79 U, MIBSC = 1.34 U,
MIBZI = 1.71 U. Dashed lines indicate the euglycemic range.

VI. REAL DATA: ASSESSMENT CRITERIA

Assessing the impact of LASSOQ on already acquired glucose
traces is important since such data cannot be manipulated. To
overcome this limitation, we decided to resort to a model-based
strategy. This approach consisted of two main steps: first, a state-
of-the-art composite physiological model of glucose-insulin
dynamics [29] was fitted on each meal-portion datum; second,
the model was used to simulate glucose concentration during the
meal by replacing the real injected insulin bolus with the insulin
dose provided by LASSOQ.

Briefly, the physiological model of choice uses the glucose-
insulin minimal model proposed by Bergman et al. [30] as the
core to describe both the effect of the insulin action and the
glucose rate of appearance on plasma glucose dynamics through
time. However, since neither the insulin action or the glucose rate
of appearance are usually available (as in our case), the model
has been expanded with the models of Schiavon et al. [31] and
Dalla Man et al. [32], which allow the final, composite model to

take, as inputs, (available) exogenous insulin infusion and meal
carbohydrate intakes.

Since the objective was to describe the effect of carbohydrate
intakes and insulin bolus on glucose concentration, the phys-
iological model was identified separately for each of the 218
traces by adopting the Bayesian framework, described in [29],
which makes it possible to, effectively, circumvent any undesired
non-identifiability issues and, also, provides point estimates
of unknown model parameters by exploiting a Markov-Chain
Monte Carlo strategy. Other details regarding both the phys-
iological model and its identification procedure can be found
in [29]. Consequently, we obtained 218 different parameter sets
(PS), one for each trace. We then analyzed, trace-by-trace, the
results obtained from this identification procedure. In particular,
we decided to discard those traces whose pre-prandial BG value
was outside the euglycemic range from the final evaluation for
two main reasons: i) they do not belong to our bolus calculator
domain of validity, since it was trained only on glucose traces
with this initial condition; ii) we observed that glucose traces
with pre-prandial BG concentrations outside the euglycemic
range resulted in model parameters which were not physiologi-
cally plausible. Therefore, the resulting dataset is composed of
129 glycemic traces, 110 in scenario A and 19 in scenario B.

Then, in order to quantify, for each of the 129 traces, the
glycemic outcomes resulting from the use of LASSOQ, we set
up a 4-hour long scenario where we simulated the corresponding
trace 5 times using the real insulin dose input and the doses
computed with LASSOQ, BU, SC, ZI and SF respectively. For
each simulation, we quantified glycemic control in terms of
THypo, THyper, and in percentage time within glucose target
range (TTarget).

VII. REAL DATA: RESULTS

The performance of LASSOQ model was assessed separately
on scenario A and the scenario B (see Section II for the di-
vision). The times in each glycemic range are reported either
as mean (±standard deviation) for Gaussian distributed metrics
and median [interquartile range] otherwise. For this purpose, the
non-Gaussian nature of each distribution was checked using Lil-
liefors test with a 1% confidence level. The resulting metrics are
reported in Table IV for scenario A, and Table V for scenario B.

In order to compare the results obtained through the adoption
of LASSOQ in scenario A versus the other methods considered,
we reduced THyper while maintaining comparable results in
terms of TTarget and /but without inducing hypoglycemia. How-
ever, in scenario B, LASSOQ considerably increased TTarget
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TABLE V
COMPARISON OF METRICS OBTAINED FROM SCENARIO B, FOR SF, STATE-OF-THE-ART METHODOLOGIES AND LASSOQ. MEDIAN AND INTERQUARTILE

RANGE ARE REPORTED FOR THypo, THyper , MEAN AND STANDARD DEVIATION FOR TTarget

but reduced THypo. Indeed, while the LASSOQ median value of
20.83% was equal to the value obtained with the administered
bolus, both the 25th and the 75th percentiles were about 5%
lower. This same result was also observed when LASSOQ was
compared with the other methods considered. In conclusion, the
application of the proposed LASSOQ model to the real data
supports the positive results obtained in silico.

VIII. CONCLUSION

By adopting machine learning techniques, we developed four
models for MIB calculation, with the aim of improving the SF
traditionally used for insulin dosage and, hence, improving the
quality of glycemic control. A comparison was performed using
three state-of-the-art methods described in the literature (BU,
SC and ZI) which have the same objective. We assessed the
performance of these models by evaluating the goodness-of-fit
(RMSE, R2), by quantifying each model ability to approxi-
mate the optimal insulin dose (MIBOPT ), and then compared
them with commonly adopted glycemic control indices (THypo,
THyper, BGRI and IHypo). We found that the improvements
offered by the new models were significant when compared with
SF, BU, SC and ZI. The in silico test also showed that LASSOQ

and LASSOQI performed better than MLR and LASSO models,
being able to better approach the MIBOPT thanks to the addition
of quadratic and interaction terms between the features as input
variables. In particular, LASSOQ and LASSOQI reduced hypo-
glycemia duration and incidence, indeed, the 75th percentile of
THypo was halved with the two models, and, furthermore, IHypo

decreased when compared with both SF and the state-of-the-art
methods. This latter result suggests that the models proposed
could result in a safer glycemic control. However, LASSOQI

did slightly increase THyper compared to MIBOPT . For this
reason, we selected LASSOQ as our final model, as it offered the
best compromise for reducing hypoglycemia without increasing
hyperglycemia. Positive results, obtained through simulations,
were confirmed by retrospective analysis on real data. Indeed,
the application of LASSOQ provided a reduced THyper value in
meals with postprandial hyperglycemia (scenario A) and a lower
THypo in meals with postprandial hypoglycemia (scenario B).

To conclude, this work suggests that information on BG
dynamics at mealtime are the key to reduce the risk of
hypo/hyperglycemia after the meal. Future developments will
include further investigations of the new model within a multi-
meal scenario [33], including additional error sources, such as er-
rors in patient behavior [34], carbohydrates miscalculations [35]
and sensor readings [36], [37].
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