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Abstract—In type 1 diabetes management, maintaining 

nocturnal blood glucose within target range can be challenging. 
Although semi-automatic systems to modulate insulin pump 
delivery, such as low-glucose insulin suspension and the artificial 
pancreas, are starting to become a reality, their elevated cost and 
performance below user expectations is hindering their adoption. 
Hence, a decision support system that helps people with type 1 
diabetes, on multiple daily injections or insulin pump therapy, to 
avoid undesirable overnight blood glucose fluctuations (hyper- or 
hypoglycaemic) is an attractive alternative. In this paper, we 
introduce a novel data-driven approach to predict the quality of 
overnight glycaemic control in people with type 1 diabetes by 
analyzing commonly gathered data during the day-time period 
(continuous glucose monitoring data, meal intake and insulin 
boluses). The proposed approach is able to predict whether 
overnight blood glucose concentrations are going to remain within 
or outside the target range, and therefore allows the user to take 
the appropriate preventive action (snack or change in basal 
insulin). For this purpose, a number of popular established 
machine learning algorithms for binary classification were 
evaluated and compared on a publicly available clinical dataset 
(i.e. OhioT1DM). Although there is no clearly superior 
classification algorithm, this study indicates that, by using 
commonly gathered data in type 1 diabetes management, it is 
possible to predict the quality of overnight glycaemic control with 
reasonable accuracy (AUC-ROC=0.7). 
 

Index Terms—Decision support systems, machine learning, 
glycaemic control, night quality, type 1 diabetes 
 

I. INTRODUCTION 
YPE 1 diabetes (T1D) is a long-term condition 
characterized by loss of insulin secretion by the pancreatic 
β cells [1]. Standard insulin therapy is very demanding for 

people living with T1D. In particular, people with T1D measure 
capillary blood glucose several times a day and administer 
exogenous insulin via multiple daily injections (MDI) or 
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continuous subcutaneous insulin infusion (CSII). Continuous 
glucose monitoring (CGM) technology [2] has enabled more 
advanced technologies to support self-management such as 
sensor-augmented insulin pumps with low-glucose insulin 
suspend [3], the artificial pancreas [4], and decision support 
systems (DSS) for insulin dosing [5]. Although the artificial 
pancreas might be, a priori, the holy grail of the technological 
solutions for glucose management, slow market adoption, 
elevated cost, and some unmet customer expectations [6], may 
limit uptake and emphasize the importance of research focused 
on DSS [7]. 

DSSs are software tools designed to help people with 
diabetes to improve blood glucose (BG) control in their daily 
routine. For instance, typical a DSS consist of alerts notifying 
the user of potential future adverse events, such as 
hypoglycaemia and hyperglycaemia [8]. They might also 
suggest the administration of meal insulin boluses or corrective 
insulin boluses to mitigate hyperglycaemia [9,10,11], 
recommend the intake of carbohydrates (CHO) to tackle 
hypoglycaemia (rescue CHO) [12, 13, 14], or provide 
suggestions to prevent exercise-induced hypoglycaemia [15].  

Another less studied application where DSS for T1D 
management can be very useful is the provision of 
recommendations to improve overnight glycaemic control [16]. 
There is significant clinical evidence that overnight glycaemic 
control is affected by the behaviour of the person with diabetes 
during the day [17].  Therefore, a DSS that recommends 
measures, such as adjusting overnight basal insulin dosing, or 
whether rescue CHO should be taken before going to bed, could 
be a very useful tool. 

A significant amount of research has been done for 
forecasting blood glucose levels within a short to mid-term 
horizon (15min-2hours) [18], and some of this work has been 
translated to commercial products, such as the predictive low-
glucose insulin suspension systems (Medtronic 640G and 
Tandem Basal-IQ). However, such short prediction horizons 
might not always be sufficient to prevent overnight 
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hypoglycaemia and do not prevent the user from waking up 
during the night in the case of a prediction alert being triggered. 

Machine learning techniques are becoming increasingly 
popular to solve many T1D management problems, such as 
glucose forecasting [19], optimal insulin dosing [9,10], patient 
risk stratification [20], and CGM fault detection [21], as a result 
of their ability to represent complex non-linear input-output 
relationships, such as glucose-insulin dynamics. They can also 
be used to classify the quality of glycaemic control. A 
preliminary work on this subject has been proposed by Bertachi 
et al. looking at predicting nocturnal hypoglycaemia using 
artificial neural networks [22]. However, this work just focuses 
on hypoglycaemia prediction and evaluates only one 
classification algorithm. 
In this work, we hypothesise that it is possible to predict the 
quality of overnight glycaemic control of a person with T1D by 
analysing the features extracted from CGM and commonly 
user-reported data (CHO and insulin) from a predefined 
temporal window within the preceding day-time period. In 
particular, three independent binary classification problems are 
defined to determine, at bedtime, the probabilities of three 
metrics associated with the quality of overnight glycaemic 
control: 1) the percentage time spent in target range, 2) the 
presence of nocturnal hypoglycaemia, and 3) the presence of 
nocturnal hyperglycaemia. To do so, different commonly used 
machine learning models (binary classifiers) are evaluated on a 
clinical dataset and their performance is assessed in terms of 
their classification accuracy. Finally, the best strategies, and 
their possible integration in a DSS, are discussed. 

II. METHODS 

A. Data 
The publicly-available OhioT1DM dataset was used in this 

study to evaluate the proposed approach [23]. This dataset 
contains 8 weeks of data corresponding to six participants with 
T1D between 40 and 60 years old, all of them on insulin pump 
therapy and CGM. During the 8 weeks of study, participants 
were using the Medtronic 530G insulin pumps and the 
Medtronic Enlite CGM sensors (Medtronic Diabetes, 
Northridge, CA, US). Participants also reported life-event data, 
such as mealtime and CHO intake, using a smartphone app. 
Finally, physiological data was collected from a Basis Peak 
fitness band (Intel, Santa Clara, CA, US). Among all the data 
available in this dataset, the following physiological data were 
used in this study: CGM blood glucose level sampled every five 
minutes; insulin doses, both bolus and basal; user self-reported 

meal times with carbohydrate estimates; time and amount of 
rescue carbs, and time of self-reported hypoglycaemic events. 

B. Pre-processing of Raw Data 
Despite robust data collection methodology, the OhioT1DM 

dataset still contains some data corruption, mainly due to 
erroneous manual inputs and missing data. Therefore, the 
following steps were followed to clean the raw data: 

 
• Missing data from the CGM, which might happen due 

to sensor failure or data transmission problems, was 
addressed by discarding days with two consecutive 
hours of missing data. Otherwise, missing data was 
interpolated using the spline method. Moreover, the 
first and last day for each patient were also discarded 
as they were frequently incomplete.  

• Outliers in the user self-reported CHO content 
estimation were identified and corrected (e.g. three 
times beyond the standard deviation). These outliers 
were replaced by the mean of the CHO intake over the 
8 weeks of data collection. 

 
In addition, to reduce the errors arising from using the 

discrete time series of CHO intake and insulin boluses, the 
following data transformations based on physiological models 
were performed to convert them into continuous time series. 
CHO intake was converted to the glucose rate of appearance 
into the systemic circulation using the gastrointestinal 
absorption model developed by Hovorka et al. [24]. Moreover, 
plasma insulin concentration due to subcutaneous insulin 
infusion was estimated using a validated model of subcutaneous 
insulin absorption [24]. Finally, data was segmented as follows. 
The 8-weeks continuous profiles were divided into individual 
days, each of them starting at 5am. This time was selected after 
visual inspection of the daily profiles, concluding that the 
majority of participants woke up between 5am to 6am. Then, 
these daily-profiles were further divided into day-time and 
night-time. Night-time was defined from 1am to 5am in order 
to exclude the impact of the postprandial excursion after dinner 
and the breakfast time. The period defined as day-time was 
chosen by using windows of different lengths (1h, 3h, 5h, 8h, 
12h and 18h) before 11pm (see Fig. 1). The period from 11pm 
to 1am was not considered for feature extraction as it coincides 
with the postprandial excursion after dinner. 

 
 

Fig. 1.  Segmentation of daily profiles into day and night periods. The blue boxes represent the temporal windows used to extract the day-time features (e.g. 1h, 
8h or 18h windows). The green boxes represent the temporal windows used to extract the night-time features. Note that night-time features are used to compute 
the category label for three independent binary classification problems: night-time within glucose range, with hypoglycaemia and with hyperglycaemia) 
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C. Feature Extraction and Labeling 
For each day-time and night-time periods, a set of 19 features 

were extracted (see Table I). This set of input features includes: 
i) 8 indices to describe glucose variability in the time domain; 
ii) 8 indices to describe glucose variability in the frequency 
domain (Fast Fourier Transform, FFT), which comprise the 4 
highest amplitudes and their corresponding frequencies 
(discarding the DC component); and iii) features related to meal 
intake, insulin dosage and presence of self-reported 
hypoglycaemic events. Note that features extracted from the 
frequency domain of the CGM signal contain valuable 
information that contributes to acquiring a better 
characterization of the signal [25]. A sensitivity analysis was 
carried out in a preliminary study to assess the impact of the 
features extracted from the FFT on the overnight glycaemic 
control quality and the indices that demonstrated the greatest 
impact were incorporated into the features set. As a result, the 
complete set of input features are deemed to provide enough 
information to evaluate the risk of suffering severe glucose 
fluctuations, i.e. hypoglycaemia or hyperglycaemia, both 
during day and night times. Note that other features such as 
exercise, stress, and illness might also significantly affect 
glycaemic control. However, in this work, we hypothesise that 

by only using CGM, meal, and insulin data, it is possible to 
predict the quality of overnight glycaemic control.  

The complete set of 19 features extracted from the day-time 
period was used as input to the classification problem. Then, in 
the first classification problem (Night_in), nights with more 
than 80% time in the glucose target range [70 – 180] mg/dl 
(time_in) with no nocturnal hypoglycaemic events detected or 
reported (hypo_correct, hypo event), were labelled as On-
target. Otherwise, nights were labelled as Off-target. In the 
second classification problem (Hypo_night), nights were 
labelled as Hypo when a hypoglycaemic event was detected or 
reported by the user. Hypoglycaemic events were considered 
when there was a self-reported hypoglycaemic event or CGM 
measurements were below 70 mg/dL for at least 10 min, or 
below 55 mg/dL for at least 30 min, as defined by Maahs et al 
[26]. Otherwise, nights were labelled as Non-hypo. In the third 
classification problem (Hyper_night), nights were labelled as 
Hyper when the percentage time above target 180 mg/dL 
(time_above) during the night-time period was more than 30%. 
Otherwise, nights were labelled as Non-hyper. A description of 
the features and thresholds used for each type of label is 
reported in Table II. 

In summary, the feature extraction and labeling steps 
produce, for each classification problem, a set of observations 
consisting of 19 features extracted from the day-time period and 
three binary labels determined from the following night-time 
period. Fig. 2 depicts the three previously described binary 
classification problems.  

D. Selected Binary Classification Methods 
A binary classifier is a type of supervised learning algorithm 

that is used to classify the elements of a given set into two 
groups on the basis of a classification rule [27]. In this study, 
three binary classifiers are used to classify the quality of 
overnight glycaemic control into: On-target/Off-target nights, 
Hypo/Non-hypo nights, and Hyper/Non-hyper nights. In 

TABLE I 
CALCULATED FEATURES FROM THE CGM, MEAL INTAKE, AND INSULIN 

DOSAGE DATA 

Category Feature Abbreviation 

Temporal 
domain 

Mean CGM mean_cgm 
Standard deviation CGM std_cgm 

Risk index ri 
Low blood glucose index lbgi 
High blood glucose index hbgi 

Percentage of time in target 
(70 -180 mg/dl) 

time_in 

Percentage of time below 
target 

time_under 

Percentage of time above 
target 

time_above 

Frequency 
domain 

Four largest Fourier 
coefficients 

P_1, P_2, P_3, 
P_4 

 Frequencies corresponding to 
largest coefficients 

f_1, f_2, f_3, f_4 

Insulin dosage Mean plasma insulin 
concentration 

ins 

Meal intake Mean CHO rate of rate of 
glucose appearance (Ra) 

 

Hypoglycaemic 
events 

Total amount of rescue CHO hypo_correc 

 

TABLE II 
DEFINITION OF THE THREE CLASSIFICATION PROBLEMS FOR PREDICTING OVERNIGHT GLYCAEMIC CONTROL QUALITY  

Classification problem Abbreviation Binary labels and definitions 

1. Night in target  Night_in 
On-target: 

time_in > 80% & hypo_correc = 0  
& no reported hypo event   

Off-target: 
time_in ≤ 80% or hypo_correc ≠ 0 

 or & reported hypo event   

2. Nocturnal 
hypoglycaemia  

Hypo_night 
Hypo: 

hypo_correc = 0  
& no reported hypo event   

Non-hypo: 
hypo_correc ≠ 0 or reported hypo event  

3. Nocturnal 
hyperglycaemia 

Hyper_night 
Hyper: 

time_above < 30% 
Non-hyper: 

time_above ≥ 30% 

 

 
 
Fig. 2.  Description of each observation: metadata (green), feature vector 
(orange) and labels (red). 
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particular, the following commonly used binary classifiers have 
been selected for comparison purposes: Random Forest 
Classifier (RFC) [28], Artificial Neural Networks (ANN) [29], 
Support Vector Machine (SVM) [30], Linear Logistic 
Regression (LLR) [31], and Extended Tree Classifier (ETC) 
[32]. Unlike other machine learning techniques (e.g. Deep 
Learning), the selected techniques are well-suited to deal with 
relatively small datasets, such as the OhioT1DM dataset. 

E. Pre-processing of the Feature Vectors 
Some pre-processing techniques were applied to the feature 

vectors before building the models to address some issues that 
might arise from working with clinical datasets: 

• Class imbalance: To handle class imbalance the 
Synthetic Minority Over-sampling (SMOTE) 
technique, which performs over-sampling of the 
minority class to equalize the number of samples in all 
the classes and acquire better performance [33]. 

• Data scaling: it is a common pre-processing step for 
many classifiers that can affect the classifier’s 
performance. Data standardization was performed on 
the input feature vectors. The advantage of using 
standard scaling is to centralize the data distribution so 
that the feature distribution becomes zero mean and 
unit variance. 

F. Evaluating Performance for Model Selection 
The work-flow proposed by Hernandez et al. was used to 

build and evaluate the models (see Fig. 3) [34]. In this process, 
the data was initially divided into cross-validation (CVS) and 
hold-out datasets (HOS), with the latter dataset comprising the 
25% of the observations. It is worth noting that data-sampling 
was performed exclusively within the CVS training dataset. 
Otherwise, if applied before it would negatively affect the 
results by leading to over-fitting and/or generation of artificial 
observations that would be used for testing. In this study, 10-
fold stratified cross-validation was used to assess the model’s 
performance on an independent dataset. Models were tested on 
both balanced and imbalanced versions of the testing fold to 
reduce the risk of over-fitting. Finally, to assess the potential of 
translation of the results into a clinical decision support system, 
the models were validated on the HOS, which contains 
observations that were completely unseen during the model 
training. The overall performance score for each model was 
obtained by averaging the results obtained on the HOS across 
the 10 folds. 

G. Evaluation Metrics 
A set of widely-accepted scores to evaluate the performance 

of binary classifiers was used. In particular, to describe and 
compare the model’s performance, the following metrics were 
employed: the area under the receiver operating characteristic 

 
 
Fig. 3.  Diagram of the work-flow followed in this study. First, raw-data pre-processing was performed, including removal of outliers, division in daily profiles 
and feature extraction. The observations are then split into 10-fold Cross-Validation Set (CVS) and Hold-out Set (HOS). Sampling and scaling were carried out 
after this division. The performance of the models was evaluated using completely unseen observations from HOS. T: equation to scale new observations;  
M: built models. 

TABLE III 
NUMBER OF OBSERVATIONS (DAILY PROFILES) FOR EACH SUBJECT AND WINDOW LENGTH DEFINING THE DAY-TIME PERIOD 

Subject #559 #563 #570 #575 #588 #591 Total 
Raw-data 52 56 51 56 56 55 326 

1h 45 49 44 46 52 45 281 

3h 43 48 42 46 52 44 275 

5h 42 46 41 45 52 44 270 

8h 41 45 39 45 51 43 264 

12h 39 43 39 42 49 39 251 

18h 32 39 33 36 43 37 220 
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curve (AUC_ROC), that quantifies class separability (unitless); 
sensitivity (SENS), that measures the proportion of true 
positives that are correctly classified as such (unitless); 
specificity (SPEC), that measures the proportion of true 
negatives that are correctly classified as such (unitless); and 
their geometric mean (GMEAN) (unitless). It is worth 
highlighting that these metrics are not affected by class 
imbalance. In particular, the AUC_ROC enables evaluation of 
the classifier’s performance along its whole operating range, 
therefore providing greater insight into the classifier’s general 
performance. For each window, the model with the highest 
combined performance score (CS) (unitless), as defined in 
Equation 1, was selected as the best model. 

 
CS=	%AUC_ROC2+GMEAN2																	(1) 

Finally, the number of true positives (TP), false positives 
(FP), true negatives (TN) and false negatives (FN), was also 
considered for the selection of the best models. 

H. Statistical Analysis 
The statistical significance of the differences between the 

classifiers scores was determined using the non-parametric test 
Kruskal-Wallis one-way ANOVA on ranks to account for the 
heterogeneity of variance. Post-hoc analysis using Tukey’s test 
was performed to determine pairwise differences. Significance 
level was set at p<0.05. 

I. Software 
Python was used in this study. The implementation of the 

models and their evaluation was done using the models and 
performance scores from the library Scikit-learn [35]. 
Moreover, the sampling techniques were used from the library 
Imbalanced-learn [36], data handling was done with Pandas 
[37] and data visualization using Matplotlib and Seaborn [38]. 
Finally, the statistical analysis was performed using 
Statsmodels [39].  

III. RESULTS 

A. Data Insight 
The number of observations (i.e. daily profiles) before and 

after the raw-data pre-processing (i.e., after profiles with too 
many missing data were discarded) for each of the subjects in 
the dataset (#559, #563, #570, #575 #588, #591) and for the 
different time windows lengths defining the day-time (1h, 3h, 

5h, 8h, 12h , 18h) is shown in Table III. The number of on-
target and off-target nights for each day-time window and label 
is depicted in Fig. 4. 

B. Prediction of Quality of Overnight Glycaemic Control 
Table 4 presents the model with the best performance based 

on the combined score (CS) of AUC_ROC and GMEAN 
(Equation 1) for each classification problem (Night_in, 
Hypo_night, Hyper_night) and temporal window. In addition, 
Fig. 5 depicts the scores (AUC_ROC, GMEAN, SPEC and 
SENS) associated with these classifiers for the different 
windows lengths and labels. 

As shown in Fig. 5, the best AUC_ROC score for the first 
two classification problems (glucose in target – Night_in, and 
presence of nocturnal hypoglycaemia – Hypo_night) is 
achieved with a window of 18h using the ETC and SVM 
classifiers respectively. These classifiers also present the 
highest GMEAN values (around 0.65 in both cases), but the 
results are not significantly different to the performance in other 
windows. Regarding the classification of night in target 
(Night_in), both specificity and sensitivity are moderate 
(between 0.5 and 0.65). On the other hand, for the classification 
of nocturnal hypoglycaemia (Hypo_night), the specificity is 
greater than the sensitivity for every window length. Focusing 
on the results of the third classification problem for predicting 
nocturnal hyperglycaemia (Hyper_night), the best model was 
found to be the RFC classifier in the window of 8h. While the 
sensitivity was lower for all the window lengths (0.5 to 0.6), the 
AUC_ROC (0.73) and the specificity (0.8) obtained with this 
classifier were significantly higher than those obtained by the 
other classifiers. 

IV. DISCUSSION 
Pre-processing of the data used for training and evaluating 

the binary classifiers, resulted in a considerable reduction of the 
number of observations when compared to the original dataset. 
This is an indicator of the significant number of missing CGM 
data points. Moreover, there is also a decrease in the number of 
observations with the increase of the day-time window length. 
This outcome is expected, because the longer the considered 
time interval, the higher the probability of having two-hour 
CGM gaps. Moreover, using splines to interpolate missing 
CGM data might have introduced variability that can affect the 
classification performance. Future work could take advantage 
of more advanced interpolation techniques, such as the 

 

 
Fig. 4.  Overview of class distribution within each temporal window for each label. 
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TABLE IV 
OVERVIEW OF BEST CLASSIFIERS (SHADOWED AREA) FOR EACH TEMPORAL WINDOW AND CLASSIFICATION PROBLEM 

Problem Windo
w 

Best 
model Configuration 

Night_in 

1h RFC  Minimum number of samples per leaf: 1; Number of trees: 50 

3h RFC  Minimum number of samples per leaf: 10; Number of trees: 20 

5h ANN Activation: logistic sigmoid function; Alpha=0.0001; Learning rate: 0.001; Solver: stochastic gradient-based 
optimizer 

8h ETC Minimum number of samples per leaf: 50; Number of trees: 50 

12h ETC Minimum number of samples per leaf: 5; Number of trees: 50 

18h ETC  Minimum number of samples per leaf: 50; Number of trees: 50 

Hypo_night 

1h ANN Activation: logistic sigmoid function; Alpha=0.1; Learning rate: 0.001; Hidden layer sizes: (10, 10); Solver: 
stochastic gradient-based optimizer  

3h ANN Activation: logistic sigmoid function Alpha=0.1; Learning rate: 0.001; Hidden layer sizes: (5,0); Solver: stochastic 
gradient-based optimizer 

5h SVM Decision function shape: one vs rest; Kernel coefficient: 0.01, Kernel: Radial-basis function 

8h RFC  Minimum number of samples per leaf: 5; Number of trees: 10 

12h LLR Optimization algorithm: Newton-CG           

18h SVM  Decision function shape: one vs rest; Kernel coefficient: 0.01; Kernel: Radial-basis function 

Hyper_night 

1h ETC Minimum number of samples per leaf: 5; Number of trees: 10 

3h ETC Minimum number of samples per leaf: 50; Number of trees: 10 

5h ETC Minimum number of samples per leaf: 5; Number of trees: 50 

8h  RFC   Minimum number of samples per leaf: 10; Number of trees: 50 

12h ETC Minimum number of samples per leaf: 50; Number of trees: 100 

18h ETC Minimum number of samples per leaf: 50; Number of trees: 100 

 

 
 
Fig. 5.  Scores obtained with the best classifier for each temporal window length and label. *: Differences were significant in all the post-hoc pair comparisons 
(p<0.05). †: Differences were significant only between the linked classifiers (p<0.05). 
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use of T1DM physiological models to account for the glucose 
dynamics.  

It is interesting to note that in the first classification problem 
(Night_in), there is a balanced distribution of the labels (i.e. 
normoglycaemia vs. abnormal glycaemia) along all the 
windows (see Fig. 4). However, some imbalance in the 
distributions arises in the second classification problem based 
on presence of a nocturnal hyperglycaemic event (around 40% 
of nights are hyperglycaemic). This imbalance is substantial 
when classifying based on the presence of hypoglycaemic 
nights (only around 10% of nights have hypoglycaemic events).  
   The impact of the window length in each classification 
problem was extensively studied. As depicted in Fig. 5, better 
results are obtained with larger windows, which might be 
explained by the fact that they have more information from the 
events occurred throughout the day. However, note that the 
larger the window, the smaller the dataset used for training and 
evaluating the models. Hence, the impact of the size of the 
dataset on the results is something that should be further 
evaluated in future studies.  
   In terms of model selection, as reported in Table 4, the best 
model for each window length greatly varies for each 
classification problem (Night_in, Hypo_night, Hyper_night). 
As an example, for window lengths of 1h and 3h the best 
models are RFC, ANN and ETC for each problem respectively. 
Moreover, within each classification problem there is also a 
great variation on the best model across window lengths, except 
when classifying based on nocturnal hyperglycaemia. In this 
case, the best model for almost all windows, excluding the one 
of 8h, was found to be an ETC with different parameters’ 
configuration. For the 8h window the best model was an RFC 
classifier, presenting significantly higher AUC_ROC and 
specificity in comparison with the best models on other 
windows.  
   Interestingly, for the classification problems based on the 
percentage of time in target and the presence of nocturnal 
hypoglycaemia, the highest AUC_ROC and GMEAN scores 
are achieved in the window of 18h using an ETC and SVM 
classifiers, respectively. In these classification problems, the 
sensitivity achieved with the best model for each window 
ranges from 0.3 up to almost 0.7, suggesting great dependence 
in the dataset used.  Finally, the obtained specificity was overall 
higher, especially for classification based on nocturnal hypo 
and hyperglycaemia, where values up to 0.8 are obtained.  
   Despite the promising results suggesting that different aspects 
of the quality of overnight glycaemia can be predicted, there are 
some limitations that need be addressed before translating this 
methodology into real practice. The main drawback is 
associated with the scarce amount of available data, which 
greatly restricts the training and validation of the classifiers. As 
an example, for the first classification problem (Night_in), in 
the testing set for the window of 18 hours there were only 3 
observations with the hypoglycaemia label in a total of 58 
observations. It is very difficult for the algorithms to infer 
patterns for further classification from such a small dataset. 
Other methods that could be investigated are the development 
of multi-class and ensembled classifiers, which could 
potentially improve the results. Another way to improve the 
results is the inclusion of additional features. For example, 
incorporating information about changes in the basal insulin 

profile could help improving the classification of overnight 
glycaemic control. Moreover, non-stationary frequency 
analysis methods, such as wavelets transform, which provide 
temporal-specific glycaemic features, could also potentially 
improve the classification results. Such potential improvement 
will be investigated in future work. The OhioT1DM dataset 
includes other physiological data, such as exercise and stress, 
which could also be included to improve the prediction of 
overnight glycaemic control. However, initial studies carried 
out by us, and by other authors [40], indicate that the inclusion 
of these parameters do not yield better results. Finally, if 
reliably measured, the quality of sleep over the preceding nights 
could also be accounted as a predictor for the glucose control of 
the current night. 
   In terms of practical implementation of the proposed 
technique in a real-life setting, this could be embedded within a 
mobile app, or within a sensor-augmented insulin pump, that 
interfaces to a CGM device. Then, by indicating bedtime to the 
app, the user would get back information about the probability 
of having a night within target, having hypoglycaemia, and 
having hyperglycaemia. In addition, based on these 
probabilities, a simple heuristic could be implemented to 
recommend the required actions to the user in order to have a 
smooth night (e.g., reducing the basal insulin by 30%). 

V. CONCLUSION 
This study indicates that it is possible to predict the quality 

of overnight glycaemia by using data from the continuous 
glucose measurements (CGM) and user-reported data 
(carbohydrates and insulin) from the preceding day-time 
period. Although there is no clearly superior approach among 
the evaluated machine learning techniques (binary classifiers), 
Extended Tree Classifier (ETC) and Support Vector Machine 
(SVM) perform better at predicting normoglyceamia and 
hypoglycaemia, while Random Forest Classifier (RFC) 
performs better at predicting nocturnal hyperglycaemia. 
Regarding the length of the considered day-time window, the 
best results were obtained for longer windows (e.g. 18 hours). 
Despite the promising results, a larger dataset is needed in order 
to fully validate the proposed approach. Finally, with a larger 
dataset, more advanced classification algorithms suited for 
processing sequences of data, such as long short-term memory 
networks (LSTM), can be evaluated. 
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