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Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet
of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secre-
tion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct
pulses. In order to observe pulsatile insulin secretion from the b-cells within the islets, the cellular
responses must be synchronized. It is now well established that gap junctions provide the electrical
nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the b-
cell population. Surprisingly, functional coupling analysis of calcium responses in b-cells shows
small-world properties, i.e., a high degree of local coupling with a few long-range “short-cut” con-
nections that reduce the average path-length greatly. Here, we investigate how such long-range
functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave
propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization
and wave properties without introducing all-or-none cell coupling and percolation theory. Our theo-
retical results highlight how local biological coupling can give rise to functional small-world prop-
erties via heterogeneity and wave propagation. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4949020]

The hormone insulin is released in distinct pulses from
the b-cells of the pancreatic islets in response to elevated
blood glucose levels, and disturbed pulsatile insulin secre-
tion is a hallmark of the metabolic disease diabetes.
Electrical coupling between b-cells leads to excitation
waves, which have been proposed to provide the synchro-
nizing signal that propagates the glucose-evoked response
across the islet. Surprisingly, recent studies showed that
the b-cells within an islet constitute a functional small-
world network, i.e., a network that shows a high degree
of local coupling with a few long-range short-cuts. There
are no obvious anatomical candidates for these short-
cuts, and further, small-world networks typically do not
promote wave propagation. Using computer simulations
of a heterogeneously nearest-neighbor coupled lattice net-
work of b-cells, we propose that the functional long-
range coupling is due to wave propagation. Further, we
show that heterogeneity and gap junction coupling can
explain wave and synchronization properties found
experimentally without resorting to percolation theory,
thus providing a more natural framework for under-
standing these previous results.

I. INTRODUCTION

Small-world networks1 have received substantial inter-
est in the last two decades. Such networks are characterized
by a high degree of local coupling with a few long-range
“short-cut” connections that reduce the average path-length
greatly. Global air transportation,2 co-starring film actors,1

and the World Wide Web3 are examples of social and man-

made small-world networks. Several biological networks
have also been shown to exhibit small-world properties, such
as the human brain as revealed by different imaging techni-
ques,4 the neural network of the nematode worm
Caenorhabditis elegans,1 and the metabolic network of
Escherichia coli.5 Recently, Ca2þ imaging demonstrated that
neural progenitors6 and insulin-secreting pancreatic b-
cells7,8 are functionally coupled in small-world networks.

Functional coupling is derived through pair-wise statisti-
cal analysis of the signals from nodes within the network and
represents, for example, whether two cells show similar
functional behavior. When the correlation of the two signals
is above a certain threshold, the nodes are defined to be func-
tionally coupled.7,9 Mechanistic or physical coupling can be
expected to induce functional coupling, but it is not obvious
that direct coupling can be inferred from functional coupling;
it may be envisaged that two distant nodes appear function-
ally coupled due to the propagation of a coupling signal via
intermediate, directly coupled nodes. In order for the func-
tional signals to be approximately synchronous, so that the
nodes are defined as functionally coupled, the coupling sig-
nal should propagate fast enough to avoid significant delays
compared to the time-scale of the functional signal, e.g., the
period of Ca2þ oscillations.

Axonal extensions can readily explain the anatomical
foundation for the short-cut connections in neuronal small-
world networks.9 In contrast, b-cells are known to be locally
coupled by gap junctions formed by connexin-36 (Cx36)
proteins, which are crucial for intra-islet synchrony10 and
Ca2þ wave propagation.11,12 Presumably, these excitation
waves provide the intra-islet synchrony that, in addition to
inter-islet synchrony by unknown signals, is a prerequisite
for pulsatile insulin secretion,13 which is disturbed ina)Electronic mail: pedersen@dei.unipd.it
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diabetes.14 There are no clear candidates for the long-range
coupling suggested by functional small-worldness in pancre-
atic islets,7,8 though intra-islet neurons and paracrine com-
munication remain possible mediators of long-range
coupling.7 Further, it has been shown that spatiotemporal
wave patterns in excitable media may be disrupted by even a
low degree of long-range coupling characteristic of small-
world connectivity.15–17 Since inter-cellular Ca2þ waves are
robustly observed in pancreatic islets,11,18 ,19 these results
speak against direct long-range coupling between b-cells.
Thus, we speculated that functional coupling between distant
b-cells is the result of excitation waves spreading via local
gap junction coupling,18 rather than that of physical long-
range links.

We investigate this hypothesis with a mathematical
model of heterogeneously gap-junction-coupled b-cells in a
regular lattice network. We show that nearest-neighbor cou-
pling can result in small-world characteristics of the network
when investigated with “functional coupling.” Moreover, our
simulations show that synchronization and wave properties
of islet Ca2þ dynamics11 can be explained by heterogeneity
and ohmic gap junction coupling. Our results prove that
functional small-worldness is not necessarily a result of ana-
tomical or mechanistic small-worldness.

II. RESULTS

We performed simulations of electrically coupled beta-
cells, each modeled by a general and commonly used mathe-
matical description of bursting electrical activity and Ca2þ

oscillations.20 The cells were organized in a hexagonal lat-
tice21 where a center cell has 12 neighbors. Cell parameters
and coupling strengths were distributed randomly, in particu-
lar, the findings that only "67% of adjacent cells (possible
cell pairs) are gap-junction coupled22 were taken into consid-
eration. As a result, a center cell was on average coupled to
"8 cells, in good agreement with estimations from whole-
islet patch clamp recordings.23

Our aim was to investigate if such an arrangement can
explain, simultaneously, wave propagation commonly seen
in pancreatic islets11,18 and small-world properties of the cell
network defined by functional coupling.7,8 Further, we were
interested in studying the origin of synchronization and wave
properties when gap junction coupling strength was
modified.11

For this latter purpose, pharmacological or genetic
reduction of the gap junction conductances was assumed to
be heterogeneous, reducing the coupling strength between
individual pairs of cells unevenly. This assumption reflects
that the degree of pharmacological inhibition of gap junction
channels most likely various from one cell pair to another.
Similarly, Cx36þ=# cells were assumed to have some cell-
to-cell variation around the 50% reduction in the number of
gap junction channels expected from the heterozygous
genotype, which could be due to the differences in post-
processing, protein transportation, and formation of func-
tional gap junctions. Such heterogeneity was modeled by
multiplying individual conductances with randomly distrib-
uted constants drawn from a distribution with mean l

between 0 and 1, and standard deviation 0.2 (see Sec. IV).
The drawn constants were truncated to guarantee that they
fell within the interval [0, 1].

We analyzed our simulations following the approach of
Benninger et al.11 in order to facilitate comparison with their
experimental results (see Sec. IV for details). We found that
Ca2þ waves propagated across the islet (Fig. 1), and that the
wave speed was reduced when gap junction conductance
was diminished (Fig. 2(a)). Below a certain average gap
junction strength (l$ 0.4), wave propagation no longer

FIG. 1. Wave propagation. (a) A snapshot of a center plane of a three-
dimensional hexagonal lattice of simulated b-cells (nodes) with l¼ 0.8 at
time t¼ 5 s. The edges indicate whether two neighbor cells are directly
coupled (gij> 0 pS). Note that coupling may occur via adjacent layers. The
size of the nodes and the intensity of the shade of grey indicate the simulated
Ca2þ level at the given time point. The colored circles indicate cells for
which Ca2þ traces are shown in panel (c). (b) As in panel (a), but at time
t¼ 6 s. Note that the Ca2þ wave has propagated from the upper left towards
the lower right. (c) Simulated Ca2þ traces of the three cells indicated in pan-
els (a) and (b) by the correspondingly colored circles. The vertical lines indi-
cate the times of the snapshots shown in panels (a) and (b).
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occurred, in agreement with previous simulations.11

Heterogeneity is crucial for understanding this observation,24

since in the case of homogeneous cell properties and gap
junction coupling the wave speed is proportional to the
square root of the coupling strength11,18 and allows wave
propagation also for very small gap junction conductances
(Fig. S1 in the supplementary material25). In contrast, with
heterogeneity, the wave speed is approximately proportional
to the square root of the harmonic mean of the coupling
strengths,24 which can be very small even when the average
coupling strength is well above zero. Indeed, the wave
speeds in our simulations were approximately proportional
to the square-root of the harmonic mean of the positive gap
junction conductances weighted by the fraction of positive
conductances (Fig. 2(a), see also Sec. IV).

The model simulations also reproduced the islet syn-
chrony properties as gap junction conductance was varied
(Fig. 2(b)).11 In this approach, the cross-correlation between
each of the simulated single-cell Ca2þ traces and the average
islet Ca2þ signal was calculated, and the degree of synchrony
was defined as the fraction of cells having peak cross-
correlation coefficient >0.8 5 (see Sec. IV and Ref. 11).
Confronting panels (a) and (b) in Fig. 2 suggests that the
propagating waves are responsible for synchronizing the b-
cell population in our simulations. Thus, heterogeneous gap
junction coupling can explain wave and synchrony properties
at changing gap junction coupling strengths.

We proceeded by analyzing the correlation between
Ca2þ oscillations in the cells, following the recipe of Sto!zer
et al.7 Pair-wise cross-correlation coefficients were calcu-
lated for the simulated cellular Ca2þ traces after discarding
initial transients (see Sec. IV for details). If the Ca2þ oscilla-
tions of two cells showed correlation above a threshold level,
then these cells were defined to be functionally coupled.
Thus, from this analysis, we obtained a graph with nodes
representing cells, and all-or-none edges indicating whether
two nodes (cells) were functionally coupled (Fig. 3(a)). The
graph was then analyzed with techniques from network
theory. In particular, we calculated the average clustering
coefficient C, which measures the degree of local coupling in
the network, and the efficiency E, an indicator of how well
information is transferred across the network.9,26 We then

FIG. 2. (a) Calculated wave speeds for 10 simulated islets for each value of l (dots), and scaled square-roots of the weighted harmonic means of the positive
gap junction conductances, averaged over the 10 b-cell networks (gray curve). (b) Synchronization measured as the fraction of cells with peak cross-
correlation coefficient >0.8 5 in 10 simulations for each value of l (box plots), and corresponding experimental data (points with error bars) taken from
Benninger et al.11

FIG. 3. Functional coupling and small-worldness. (a) An example of a func-
tional network of b-cells. The same plane of simulated b-cells shown in Fig.
1 was analyzed as explained in Sec. IV; functional coupling is indicated by
edges between nodes (cells). (b) Clustering coefficients for varying coupling
strength. The box plots indicate the results of 10 simulated b-cell networks
(black) and 10 corresponding random networks (gray). (c) As in panel (b),
but showing the efficiencies.
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confronted these indices with indices obtained from a graph
with the same number of nodes and edges (degree), but
where the nodes were linked randomly (Erd€os-Renyi graph).
Small-world networks are defined by having efficiency
similar to random networks (E$Er) due to long-range
connections, whereas the average clustering coefficient is
much higher, reflecting that small-world networks locally
(in topological sense) are similar to lattice networks.1

These conditions are often condensed into the index
S¼ ðC=CrÞ=ðEr=EÞ, and small-worldness is defined7 as
S> 1.

Table I confronts the results of our simulations with the
results from Sto!zer et al.7 We find that our simulations ex-
hibit indices similar to the experimentally obtained ones
with the best correspondence for l¼ 0.8 . In particular, our
nearest-neighbor coupled network shows small-worldness
with respect to functional coupling, although the S value
tends to be slightly below the experimental value. For
l¼ 0.8 , this is entirely due to a too high average clustering
coefficient for the random networks (Cr). All together, our
results highlight that functional small-worldness does not
necessarily imply direct long-range coupling, but that such
long-range functional coupling can result, for example, from
excitation wave propagation between nearest neighbors.

To investigate this idea further, we analyzed the graphs
defined by functional coupling as the gap junction coupling
strength was varied, which, as discussed above, change the
wave properties.11 We found that the clustering coefficient C
was greater than the corresponding random network, C>Cr,
for l> 0.4 (Fig. 3(b)). In contrast, the networks of b-cells
had similar, or slightly lower, efficiencies than the corre-
sponding random networks for l> 0.4, E"Er (Fig. 3(c)).
Thus, S> 1 for l> 0.4 indicating small-worldness in the
simulated b-cell network. Note that this range of gap junc-
tion coupling strength corresponds to the values where wave
propagation and synchrony are obtained (Fig. 2), suggesting
that the concepts of wave propagation, functional coupling,
and small-worldness are intimately related.

III. DISCUSSION

In this work, we have investigated the influence of heter-
ogeneity and gap junction coupling between simulated
b-cells with attention to wave propagation, synchronization,
and small-world properties. We were able to reproduce appa-
rently unrelated experimental results regarding, respectively,
synchrony and wave propagation11 or small-world network

properties7,8 in a unifying framework consisting of a lattice
of coupled b-cells.

We suggest that wave propagation is the key to explain
the findings. First, synchronization is related to whether
wave propagation is present or not, both in experiments11

and in our simulations (Fig. 2). Second, we found that distant
cell was functionally coupled in spite of the imposed
nearest-neighbor coupling (compare edges in Figs. 1(a) and
3(a)). Likely, the observed excitation waves provide the
communication between these distant cells, yielding the
near-synchrony that results in functional coupling when the
simulated Ca2þ traces are analyzed. These long-range short-
cuts in the functional network (Fig. 3(a)) assure that the effi-
ciency is similar to the corresponding random networks (Fig.
3(c) and Table I). The efficiency is a measure of how effi-
ciently the network transports information. In the case of
pancreatic islets, it has been suggested that wave propagation
is a means to communicate a glucose stimulus between b-
cells.18 Our results show that the networks of nearest-
neighbor coupled b-cells have efficiencies approaching the
efficiencies of the corresponding random graphs (Fig. 3(c)),
which suggest that the excitation waves transport informa-
tion, such as the presence of glucose stimuli, between cells
almost as efficiently as random networks.

In contrast, the clustering coefficient was higher in our
simulations than in the corresponding random networks for
the entire range of coupling strengths permitting wave propa-
gation (l> 0.4, Fig. 3(b)), which together with the efficiency
results lead to the small-world property in our simulations
(Table I) in agreement with experimental findings.7 The high
clustering coefficient is what is to be expected in a lattice
network as simulated here. In biophysical terms, the small-
world property means that neighboring cells, because of
direct gap-junction coupling, are easily synchronized (high
clustering coefficient) but some distant cells are also
synchronized because of wave propagation (long-range
short-cuts and high efficiency).

We propose that it is heterogeneity and gap junction
coupling that determine the wave speed and the degree of
synchrony in the network (Fig. 2) when the coupling strength
varies. Previous simulations of wave propagation between
heterogeneous, gap junction coupled b-cells agree with the
results presented here,11 but were interpreted using percola-
tion theory, which considers and modifies the fraction of all-
or-none coupling to model changes in average gap junction
conductance. In our opinion, this interpretation is biologi-
cally less realistic than our view focusing on heterogeneity,
and moreover, does not correspond to the simulations.
Indeed, the number of missing connections is constant in our
simulation for l ( 0.4 (Fig. 4), i.e., the range where wave
speed, the fraction of synchronized cells, and the clustering
coefficient and efficiency vary (Figs. 2 and 3). Note also that
we are far from the percolation threshold for hexagonal
three-dimensional lattices (pc¼ 0.12, i.e., 8 8 % missing con-
nections27) in all our simulations (Fig. 4).

To understand how the wave speed changes with cou-
pling strength, heterogeneity is crucial. If both cell parame-
ters and coupling are homogeneous, the wave speed follows
the square-root of the gap junction conductance,11,18 and

TABLE I. Functional network parameters. The values are medians of values

obtained from 10 simulated b-cell networks and 10 corresponding random
graphs.

l C Cr C/Cr E Er Er/E S

0.6 0.46 0.05 10.35 0.05 0.12 2.67 3.8 8

0.8 0.62 0.21 3.10 0.41 0.60 1.44 2.15

1.0 0.70 0.36 2.01 0.55 0.68 1.24 1.61

Sto!zer et al.7 0.67 0.12 5.59 0.29 0.41 1.41 3.96
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wave propagation is seen even for low coupling strengths
(Fig. S1), in contrast to experiments.11 Cell-to-cell variation
in intrinsic cell parameters can give results similar to experi-
mental findings even in the presence of (biologically unreal-
istic) homogeneous electrical coupling (Fig. S2). Of note,
the threshold for wave propagation and synchrony is not due
to percolation failure, since the number of missing connec-
tions was kept constant at 33%, well below the percolation
threshold.27 Previous studies of coupled heterogeneous b-
cells similarly found that the cell population did not syn-
chronize at low coupling strengths, and moreover that this
finding did not depend on whether gap junction coupling was
assumed heterogeneous or homogeneous.28 Simulations of
heterogeneous cardiac or Fitzhugh-Nagumo cells with homo-
geneous coupling also showed that a certain coupling
strength is needed to permit wave propagation and syn-
chrony.29 Thus, the presence of a coupling threshold below,
which wave propagation is absent, is not strictly dependent
on the presence of heterogeneous coupling, if the cell popu-
lation is heterogeneous.

Finally, assuming homogeneous reduction in the gap
junction strength, modeled as kij¼l with no variation,
yielded results (Fig. S3) similar to the ones presented in the
figures above, since the cells and electrical coupling were al-
ready heterogeneous. However, in our opinion, non-
homogeneous pharmacological inhibition of gap junctions is
the more realistic assumption. In the presence of heterogene-
ous coupling, the wave speed has been predicted to be pro-
portional to the square-root of the harmonic mean of the gap
junction conductances,24 which is influenced not only by the
average conductance but also by the degree of heterogeneity
(the variation of the gap junction conductance distribution of
the islet). Indeed, the square-root of the calculated harmonic
mean predicts the simulated wave speeds decently (Fig.
2(a)). The complete absence of wave propagation below a
certain coupling strength in spite of positive harmonic mean
is likely due to the discrete and heterogeneous structure of
the cellular network, since it was also observed with homo-
geneous coupling (Fig. S2) and in the case of even reduction
of the gap junction conductance (Fig. S3), is in agreement
with previous results.11,28 ,29

In summary, our simulations highlight that wave propa-
gation can provide the mechanism of long-range synchroni-
zation in pancreatic islets with no need for direct links
between distant b-cells. Besides synchronizing the b-cell
population, the excitation waves lead to short-cuts in the
functional coupling graph, which, in combination with the
underlying lattice structure and local gap junction coupling,
result in functional small-worldness. Heterogeneity can fur-
ther explain why a certain degree of coupling is needed for
wave propagation and synchrony, and how the wave speeds
vary with average coupling strength, without assuming that
such behavior results from a change in the number of miss-
ing connections between neighbors as in percolation theory.

IV. METHODS

A. Model

We model a heterogeneous population of b-cells
arranged in a hexagonal lattice.21 Each cell is represented by
a general and widely used b-cell model,20 consisting of
descriptions of the membrane potential V, the intracellular
Ca2þ concentration Ca, four ionic membrane currents, and
passive nearest-neighbor gap junction currents. Cellular het-
erogeneity was imposed by random generation of the param-
eters according to a normal distribution with 10%–20%
standard deviation, except for the gap junction conductances
(gcij ), which have 50% standard deviation. In case the algo-
rithm drew a value for gcij < 0 pS, the conductance was set
to 0 pS to avoid negative conductances. Further, 33% of the
gcij values were randomly selected and set equal to zero.22

Such cases (gcij ¼ 0 pS) correspond to missing coupling
between adjacent cells in experiments.22 We refer to the sup-
plementary material25 for details on network construction,
equations, and parameters. Control simulations confirmed
that similar results were obtained with networks of different
size (Fig. S4) or when using a cubic lattice (Fig. S5).

To model pharmacological or genetic modification of
the gap junction conductances,11 we multiplied each gcij by a
coefficient kij, normal distributed with mean l 2 [0, 1] and
standard deviation 0.2. This assumption reflects pharmaco-
logical inhibition of an uneven number of connexons
between cell pairs, or heterogeneous connexin 36 expression
in the case of Cx36þ=# animals.11 The algorithm assures that
each kij is assigned a value between 0 and 1 by setting kij¼ 1
if a value > 1 is drawn, and kij¼ 0 if a negative value is
drawn. Missing coupling between cells i and j can thus occur
either as a result of missing gap junction channels (gij¼ 0
pS) or because of complete inhibition (kij¼ 0). The fre-
quency of such cases (kijgij¼ 0 pS) is shown in Fig. 4.

Simulations were performed in MATLAB using the
ode45 solver. Computer code is available from http://
www.dei.unipd.it/~pedersen.

B. Analysis

All analyses were performed on a sheet of 77 cells (see
Fig. 1(a)) to mimic the typical experimental setting.7,11 The
simulated islets were composed of 1643 cells.

FIG. 4. Heterogeneity, not missing connections, explains the results. The
number of missing connections, calculated as the fraction of neighboring
cell pairs where the reduced coupling strengths kijgcij equal zero, is virtually
constant in the range l 2 [0.4, 1] where the wave speed, synchrony, and net-
work properties vary. Note also that we are below the percolation threshold
of "8 0% missing connections for all values of l.
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1. Wave propagation

We measured the wave propagation velocity as
Benninger et al.:11 first, for each simulated cell, we com-
puted the cross-correlation between the time course of its
Ca2þ level and the average Ca2þ trace for the simulated islet.
We defined the time delay Dti of a given cell i as the time
index of its cross correlation-peak, so that a low (negative)
time index represents an earlier increase in [Ca2þ], while a
higher (positive) time index indicates a later [Ca2þ] rise. We
also used the cross-correlation peak value to determine
whether a given cell was synchronized or not (see Sec.
IV B 2 below).

Following the method in Ref. 11, we defined the start
and end cells of the Ca2þ waves as the synchronized cells
with the minimum and the maximum delay, respectively.
The start and end cells thus varied between simulated islets,
but were identical for the waves occurring in each simulated
islets. The wave speed is calculated as

vCa ¼
Ds12

Dt12
; (1)

where Dt12 and Ds12 represent, respectively, the difference in
time delays and the distance between the start and end cells.

To evaluate the proportional relation between simulated
wave speeds and coupling strengths, we computed the
square-root of the harmonic mean of its positive gap junction
values (gc,k), taking into account the fraction of gap junction
values equal to zero

HM ¼ NZ

NW

1

NZ

XNZ

k¼1

1

gc;k

 !#1

; (2)

where NW is the total number of gap junctions and NZ is the
number of gap junctions with positive conductance. The
square-roots of calculated HM values, scaled appropriately,
are shown in Fig. 2(a).

2. Synchrony

In order to understand if the i-th cell is synchronized to
the whole islet cluster, we compute the cross-correlation
between its [Ca2þ] time course and the islet average [Ca2þ]
time course. If the maximum value of the computed cross-
correlation coefficient is >0.8 5, then the i-th cell is consid-
ered synchronized with the islet.11 To evaluate the cluster
synchronization level, we compute the fraction of synchron-
ized cells R¼ ns/N, where ns is the number of cells consid-
ered to be synchronized and N is the total number of cells.

3. Functional coupling and network analysis

Given an islet we obtained its functional coupling graph
by two steps.7 We computed the cross-correlation coeffi-
cients Pij between simulated Ca2þ traces in pairs of cells.
Cells i and j were considered functionally coupled if and
only if Pij> 0.95, corresponding to an edge between nodes i
and j in the functional graph. The clustering coefficient of
the i-th node (cell), Ci, is defined as the number of existing

connections between all neighbors of a node, divided by the
number of all possible connections between them, and the
average clustering coefficient, C, is the average of Ci over all
nodes.1,7,9 The global efficiency E is a measure of how effi-
cient the network transports information and is inversely
related to the average shortest path length.7,9,26 We used the
The Brain Connectivity MATLAB Toolbox (http://
www.brain-connectivity-toolbox.net) to calculate C and E
for functional graphs obtained from the simulated b-cell net-
works. In the same way, we obtained the corresponding indi-
ces Cr and Er for random networks with the same degree as
the functional graphs. Small-world networks are locally
lattice-like yielding a high average clustering coefficient, C
) Cr, but have long-range short-cuts giving a high effi-
ciency, E"Er. The small-worldness parameter S is defined
as S¼ Cavg

Crand
= Erand

Eglob
. For a small-world network, S> 1.
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